

Accredited by NAAC(Cycle–III) with 'A+' Grade (Recognized by UGC, Approved by AICTE, New Delhi and Affiliated to Bharathiar University, Coimbatore)

DEPARTMENT OF GRAPHIC & CREATIVE DESIGN AND DATA ANALYTICS

COURSE NAME: COMPUTER SYSTEM ARCHITECTURE (23UCU402)

I YEAR /I SEMESTER

Unit II- LOGICAL GATES

Topic 1: Boolean Algebra

Boolean Algebra

- ✓ **Boolean algebra** is the category of algebra in which the variable's values are the **truth values**, **true and false**, ordinarily denoted 1 and 0 respectively.
- ✓ It is used to analyze and simplify digital circuits or digital gates.
- ✓ It is also called **Binary Algebra** or **logical Algebra**.
- ✓It has been fundamental in the development of digital electronics and is provided for in all modern programming languages. It is also used in <u>set theory</u> and statistics.
- ✓ The important operations performed in Boolean algebra are conjunction(∧), disjunction (∨) and negation (¬).

Rules in Boolean algebra

- 1.Only two values(1 for high and 0 for low) are possible for the variable used in Boolean algebra.
- 2.The **overbar(-)** is used for representing the c**omplement** variable. So, the complement of variable C is represented as .
- 3.The plus(+) operator is used to represent the **ORing** of the variables.
- 4.The dot(.) operator is used to represent the **ANDing** of the variables.

Boolean Algebra

Name	AND form	OR form	
Identity law	1A = A	0 + A = A	
Null law	0A = 0	1 + A = 1	
Idempotent law	AA = A	A + A = A	
Inverse law	$A\bar{A} = 0$	$A + \overline{A} = 1$	
Commutative law	AB = BA	A + B = B + A	
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)	
Distributive law	A + BC = (A + B)(A + C)	A(B+C) = AB + AC	
Absorption law	A(A + B) = A	A + AB = A	
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$	

De Morgan's First Law

- ✓ De Morgan's First Law states that (A.B)' = A' + B'.
- ✓ The first law states that the complement of the product of the variables is equal to the sum of their individual complements of a variable.
- ✓ The truth table that shows the verification of De Morgan's First

law is given as follows:

А	В	A'	B'	(A.B)'	A'+B'
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

De Morgan's Second Law

- ✓ De Morgan's Second law states that $(A+B)' = A' \cdot B'$.
- ✓ The second law states that the complement of the sum of variables is equal to the product of their individual complements of a variable.
- ✓ The following truth table shows the proof for De Morgan's second law.

A	В	A'	B′	(A+B)'	A'. B'
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

Examples

Question: Simplify the following expression:

$$c + \bar{BC}$$

Solution:

Given:

$$C + B\overline{C}$$

According to Demorgan's law, we can write the above expressions as

$$C+(\bar{B}+\bar{C})$$

From Commutative law:

$$(C + \bar{C}) + \bar{B}$$

From Complement law

$$1+ar{B}=1$$

Therefore,

$$C + B\overline{C} = 1$$

Examples

Draw a truth table for A(B+D).

Solution: Given expression A(B+D).

А	В	D	B+D	A(B+D)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Assessment - Questions

- 1. What is meant by Boolean algebra?
- 2. What are some applications of Boolean algebra?
- 3. What are the three main Boolean operators?
- 4.Is the value 0 represents true or false?
- 5. Mention the six important laws of Boolean algebra.

S IS

Assessment - Answer

1. What is meant by Boolean algebra?

In Mathematics, Boolean algebra is called logical algebra consisting of binary variables that hold the values 0 or 1, and logical operations.

2. What are some applications of Boolean algebra?

In electrical and electronic circuits, Boolean algebra is used to simplify and analyze the logical or digital circuits.

3. What are the three main Boolean operators?

The three important Boolean operators are:

AND (Conjunction)

OR (Disjunction)

NOT (Negation)

4.Is the value 0 represents true or false?

In Boolean logic, zero (0) represents false and one (1) represents true. In many applications, zero is interpreted as false and a non-zero value is interpreted as true.

5. Mention the six important laws of Boolean algebra.

The six important laws of Boolean algebra are:

Commutative law

Associative law

Distributive law

Inversion law

AND law

OR law

References

- 1.M.Morris Mano, "Computer System Architecture" 3rd Edition, Prentice Hall of India, 2000, ISBN-10: 0131663631
- 2. V.K. Puri, —DIGITAL ELECTRONICS CIRCUITS AND SYSTEMS" McGraw Hill Education (1 July 2017). ISBN-10: 9780074633175, ISBN-13: 978-0074633175
- 3.William Stallings, "Computer Organization and Architecture, Designing for Performance" PHI/ Pearson Education North Asia Ltd., 10th Edition 2016, ISBN 978-0-13-410161-3 ISBN 0-13-410161-8.

Thank You